a2 United States Patent

US009477796B2

10) Patent No.: US 9,477,796 B2

Garcia-Ramirez et al. 45) Date of Patent: Oct. 25,2016
(54) METHODS FOR GENERAL (56) References Cited
STABILIZER-BASED QUANTUM
(71)  Applicant: THE REGENTS OF THE 5768297 A T G198 SROL oo B2y 1009
UNIVERSITY OF MICHIGAN, Ann 5,787,236 A *  7/1998 TuCCi .ovvvoorcirrrr.. B82Y 10/00
Arbor, MI (US) 706/52
(72) Inventors: Hector J. Garcia-Ramirez, Ypsilanti, (Continued)
MI (US); Tgor L. Markoy, Ann Arbor, FOREIGN PATENT DOCUMENTS
MI (US)
EP 1672569 Al 6/2006
(73) Assignee: THE REGENTS OF THE WO WO0-2014-066054 A2 5/2014
UNIVERSITY OF MICHIGAN, Ann
Arbor, MI (US) OTHER PUBLICATIONS
(*) Notice:  Subject to any disclaimer, the term of this Toward a software architecture for quantum computing design
patent is extended or adjusted under 35 tools; K. Svore et al; Proc. QPL 2004, pp. 145-162.*
U.S.C. 154(b) by 0 days. (Continued)
(21)  Appl. No.: 14/719,884 Primary Examiner — Akash Saxena
(22) Filed: May 22, 2015 (74) Attorney, Agent, or Firm — Marshall, Gerstein &
Borun LLP; Randall G. Rueth
(65) Prior Publication Data
57 ABSTRACT
US 2015/0339417 Al Nov. 26, 2015 The disclosed method and computer-readable medium allow
L efficient simulation of both stabilizer and non-stabilizer
Related U.S. Application Data states in general quantum circuits on a classical computer by
(60) Provisional application No. 62/002,338, filed on May maintaining global phases and orthogonalizing linear com-
23, 2014. binations of stabilizer states during simulation. This is
accomplished by representing arbitrary quantum states as
(51) Int. CL superpositions of stabilizer states, which may be imple-
GO6F 17/50 (2006.01) mented using one or more stabilizer frames. Each stabilizer
GO6F 17/10 (2006.01) frame includes a stabilizer matrix, one or more phase vectors
(Continued) corresponding to the stabilizer states, and an amplitude
vector corresponding to the global phases of each stabilizer
(52) US. CL state. Orthogonality is maintained throughout the simulation
CPC ........... GOG6F 17/5009 (2013.01); GO6F 17/16 for efficient computation and measurement. Some embodi-
(2013.01); GO6N 99/002 (2013.01); B82Y ments utilize a multiframe representation of the quantum
10700 (2013.01) state to reduce the number of stabilizer states required to
(58) Field of Classification Search represent the quantum state, which multiframe representa-

CPC . GO6F 17/16; GO6F 17/5009; GO6N 99/002;
B82Y 10/00
See application file for complete search history.

tion may also be used to implement parallel simulation.

10 Claims, 10 Drawing Sheets



US 9,477,796 B2
Page 2

(51) Int. CL
GO6N 99/00

B82Y 10/00
GO6F 17/16

(56)

(2010.01)
(2011.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

6,081,882 A *
6,128,764 A *
6,578,018 B1 *
7,184,555 B2
7,451,292 B2
8,972,237 B2 *

9,269,052 B2 *
2003/0005010 Al*

2003/0093451 Al*
2003/0169041 Al*
2004/0238813 Al*
2006/0224547 Al*
2012/0069414 Al*
2014/0118023 Al*

2014/0280404 Al*

6/2000
10/2000
6/2003
2/2007
11/2008
3/2015

2/2016
1/2003

5/2003
9/2003
12/2004
10/2006
3/2012
5/2014

9/2014

Gossett .oooovvieienne B82Y 10/00
712/1
Gottesman ........... GO6N 99/002
714/785
Ulyanov ......cc....... B82Y 10/00
706/14

Whaley et al.

Routt

Wecker .......o...... GO6N 99/002
703/13
SVOTe .vovvvvrvviennnne GO6N 99/002
Cleve .oocvevvvvnnnne GO6N 99/002
708/403
Chuang ................. B82Y 10/00
708/520
Coury ..ccocevvvennee GO6N 99/002
324/307
Lidar ..ocoovvvienine B82Y 10/00
257/31
Ulyanov .............. GO6N 99/002
706/62
Nakamura ............. B82Y 10/00
359/107
Eastin .....ccoovnn. HO3K 19/195
326/7
SVOTe .vovvvvrvviennnne GO6N 99/002
708/200

2014/0297708 Al* 10/2014 Svore ................ GO6F 17/10
708/517

2014/0354326 Al* 12/2014 Bonderson ........... GO6N 99/002
326/5

2014/0365843 Al* 12/2014 Ashikhmin ............ GO6F 11/10
714/758

2015/0111754 Al*  4/2015 Harris .....ooovnnee GO6N 99/002
505/170

2015/0214984 Al* 7/2015 Ahn ............... GO6N 99/002
714/755

OTHER PUBLICATIONS

Improved simulation of stabilizer circuits Scott Aaronson et al;
Physical Review A 70, 052328 (2004); pp. 1-14.*

Rao, “The Next Generation Computing Brainwave—Quantum
Computing”, International Journal of Hybrid Information Technol-
ogy, 19-30 (2010).

International Search Report and Written Opinion, corresponding
International Application No. PCT/US2015/032159, mailing date
Oct. 6, 2015.

Aronson et al., Improved simulation of stabilizer circuits, Phys. Rev.
A, 70:052328 (2004).

Garcia et al., Efficient inner-product algorithm for stabilizer states,
arXiv preprint arXiv:1210.6646 (2012).

Garcia et al., On the geometry of stabilizer states, Quantum Infor-
mation and Computation, 14(7&8):683-720 (2014).

Garcia et al., Quipu: High-performance simulation of quantum
circuits using stabilizer frames, Computer Design (ICCD), 2013
IEEE 31st International Conference, pp. 404-410 (2013).

Garcia et al., Simulation of quantum circuits via stabilizer frames,
IEEE Transactions on Computers (2013).

Gottesman, Stabilizer codes and quantum error correction, Caltech
Ph.D. Thesis, 114 pages, arXiv:quant-ph/9705052 (1997).

* cited by examiner



U.S. Patent

Oct. 25, 2016 Sheet 1 of 10

US 9,477,796 B2

T FXY, 2 Herals

er
i, £ literals e

flilerals only T

JLEEEELY

FIG. 1




U.S. Patent

Oct. 25, 2016

Sheet 2 of 10

FIG. 2

US 9,477,796 B2



US 9,477,796 B2

Sheet 3 of 10

Oct. 25, 2016

U.S. Patent

£ 'Old

e il L
. % ) I -

+ Jrlt e U Z
o SIO08A 888U (20 = v

(11l {0t =

5,

L+ 01D + 1ol + ol 's = {4



US 9,477,796 B2

Sheet 4 of 10

Oct. 25, 2016

U.S. Patent

e e e e e e

M M AN AN N A A A AR A AN N AN A e

H
A A4 B S
. sl (000 = {

B T A N R T S R L

{01

SRS
{O1o] +4
-

o0 =

y

*

: 4

i
i

M s

4

¥
i
“



U.S. Patent Oct. 25, 2016 Sheet 5 of 10 US 9,477,796 B2

RECEIVE REPRESENTATIONS OF - 502
A QUANTUM STATE AND
A QUANTUM GATE (U)

A 4

DETERMINE A STABILIZER FRAME |
FOR THE QUANTUM STATE — 504
(INCLUDING A STABILIZER MATRIX
(M), PHASE VECTORS (o)) , AND AN
AMPLITUDE VECTOR (a))

»
»

.4

T 506
-~ HAS GATE U BEEN “™-.__ e ~
<7 APPLIED TOALL PHASE oo » END )

~._  VECTORS¢? \

- -

SET THE LEADING PHASES OF THE |
ROWS OF MATRIXM TO THE ~ 508
PHASES IN AVECTOR ¢; TO WHICH
GATE U HAS NOT BEEN APPLIED

v

DETERMINE AN INPUT BASIS | 210
STATE |b> OF MATRIX M”

v

DETERMINE A NON-ZERO — 512
AMPLITUDE B OF INPUT BASIS
STATE |b>

v

COMPUTE THE EFFECT OF THE 514
GATE U ON INPUT BASIS STATE AS
U(Blb>) = Bb™>)

v

DETERMINE ANON-zERO | 910
AMPLITUDE y OF |b’> FROM UM“UT

v

DETERMINE THE GLOBAL PHASE |- 518
FACTOR a, ASSOCIATED WITH
PHASE VECTOR o, AS &, = (a8 )y

|
FIG. 5




U.S. Patent Oct. 25, 2016 Sheet 6 of 10

RECEIVE A LINEAR COMBINATION
OF STABILIZER STATES
REPRESENTED BY A LIST OF
CANONICAL STABILIZER MATRICES
M € M AND COEFFICIENTS ¢ e C

— 602

h 4

604

7 o

" AREALLMATRICES -
T MeMSIMILAR? -

~..

P o END

IDENTIFY A COLUMN IN AT LEAST

DIFFERENT TYPES OF PAULI
LITERALS

TWO MATRICES IN M CONTAINING |

606

v

IDENTIFY EACH MATRIX M WITH A
PAULI X OR Y LITERAL IN THE
IDENTIFIED COLUMN

- 608

v

DECOMPOSE EACH IDENTIFIED
MATRIX M' INTO TWO NEAREST-
NEIGHBOR STABILIZER MATRICES

~ 610

v

DETERMINE THE GLOBAL PHASE

NE!IGHBOR STABILIZER MATRICES

FACTORS OF THE TWO NEAREST- |

- 612

v

SET THE COEFFICIENTS FOR THE
TWO NEAREST-NEIGHBOR
STABILIZER MATRICES USING THE
GLOBAL PHASE FACTORS

- 614

v

REPLACE EACH MATRIX M WITH
ITS TWO NEAREST-NEIGHBOR
STABILIZER MATRICES AND THEIR
CORRESPONDING COEFFICIENTS

— 616

FIG. 6

US 9,477,796 B2



U.S. Patent Oct. 25, 2016

700

[ sTART |

RECEIVE A STABILIZER MATRIX M
WITH A PAULI X OR Y LITERAL IN
ITS j COLUMN

v

ORY LITERAL IN ITS | COLUMN

IDENTIFY A ROW Rj WITH A PAULI X |-

702

704

Sheet 7 of 10

..»"'\\
T T08

" ISTHEREA .
- ROW Wj # Rf IN MATRIX M THAT >~._

T~.._ OPERATORZ -~

DECOMPOSE MATRIX M INTO A
FIRST MATRIX BY REPLACING ROW
Rj WITH PAULI OPERATOR Zj

.

DECOMPOSE MATRIX M'INTO A
SECOND MATRIX BY REPLACING
ROW Rj WITH PAULI OPERATOR -Zj

" ANTICOMMUTES WITH PAULI

- 710

~712

FIG. 7

MULTIPLY Wj BY Rj TO MAKE IT
COMMUTE WITH Zj

US 9,477,796 B2

~708



US 9,477,796 B2

Sheet 8 of 10

Oct. 25, 2016

U.S. Patent

1+ dontl = G074
VA

TH

&

8 ‘Old

w.;........,.............f....‘..............?............4 )

&

SIOBA BB

e Fane vy & Y _—
(ggggli=e

{r1ii oot +{o1ol + {oonl = (&



US 9,477,796 B2

Sheet 9 of 10

Oct. 25, 2016

U.S. Patent

6 ‘Old

S
o SO

806

i
i

FLUOTING Ji SOl JeTHIgEIS
BUULIA 0 381 wjepdn

p167 %

” T m“mﬁm«mm ' qw ERYRlE JeEigels “
L usuwsasenyy | vontsodiadns i
\ T sasiew papmanbs ¢ unmmmm,mmzﬁo X

916 sy sy »Bamp P06 A T

t

el e IS BUS U] BLIRIY Sy TTTToTTo T T :
wpl U BIOIDRA B5RY LA B R ' mels 98 :
$5 38 B pus mmnm : HORE SOERESS azpeuoBoyun ! fEE Sisey Y :

816" 026~ 8267 206"



US 9,477,796 B2

Sheet 10 of 10

Oct. 25, 2016

U.S. Patent

0L "9l1d
T30T  SWYHNOO0Ud
3SNOW viva STINGOW SWYMOOMd | WILSAS
T AVHDO0Ud | WVHDONd HAHLO| NOILYOITddY | ONILYY3dO
80t g0, QHYOEAD 89).@ .
HALN4NO0O = DoE———a00 9501 AN > -
3ioWay [ T080b N lss N -
250k T T e
o) N -
€401~ W 1 ~ -
2101 A vl -7
W3doW o sson Lo > /T
SHOMIIAN _ ~ f—
YAHY JGIM ONOP 050 ﬁ\ O,VO“\ ~ e :_:.u
L0 N - mo<me_{2_ mo/.,\u_mm NI zeor | VLY
NJ30V4U3INI | 3ovAu3LNI = : WYHD0Yd
WHOMLAN | LN M3SN AHOWIN TOA-NON| AHOWIN "TOA-NON
MHOMLAN ¥ J1BYAOWZY || T1avAOWIM-NON || [3e0r S3TNaoW
vaNY OO ) WYHOONd ¥3HLO
090l XA Y
SNE WILSAS v TeOT SWVH90Nd
¢ ¢ @ NOILYITddV
0T WALSAS
9601 ~ ¥3LNRd IOV4HILNI JOV-A4ILNI ONILYYH3dO
WNIHAIYId
1NdLN0 S I O T ommvf Tor (W)
/ Y ) ONIS$300Yd
// $601 0601 T sog
HoLon €07 (od)
AHOWIN WILSAS
1601 0LO} ~~
. 000}




US 9,477,796 B2

1
METHODS FOR GENERAL
STABILIZER-BASED QUANTUM
COMPUTING SIMULATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/002,338, entitled “Methods For General
Stabilizer-Based Quantum Computing Simulation,” which
was filed on May 23, 2014, the entirety of which is incor-
porated by reference herein.

GOVERNMENT RIGHTS

This invention was made with government support under
Grant No. FA8750-11-2-0043 from the United States Air
Force Office of Scientific Research. The government has
certain rights in the invention.

TECHNICAL FIELD

The invention relates generally to methods for simulating
quantum computing operations on classical computers and,
more particularly, to methods for efficiently simulating gen-
eral quantum states by superposition of stabilizer states.

BACKGROUND

Quantum information processing manipulates quantum
states rather than conventional 0-1 bits. It has been demon-
strated with a variety of physical technologies (NMR, ion
traps, Josephson junctions in superconductors, optics, etc.)
and used in recently developed commercial products. Algo-
rithms such as Shor’s factoring algorithm and Grover’s
search algorithm apply the principles of quantum informa-
tion to carry out certain computations asymptotically more
efficiently than classical computers. Quantum computers
hold great potential for complex computations in computa-
tional chemistry, biology, medicine, physics, and other
fields. These developments have fueled research efforts to
design, build and program scalable quantum computers. Due
to the high volatility of quantum information, quantum
error-correcting codes and effective fault-tolerant architec-
tures are necessary to build reliable quantum computers.
Most quantum algorithms are described in terms of quantum
circuits and, similar to conventional digital circuits, require
functional simulation to determine the best fault-tolerant
design choices given limited resources. In particular, high-
performance simulation is a key component in quantum
design that facilitates analysis of trade-offs between perfor-
mance and accuracy.

Simulating quantum circuits on a classical computer is a
difficult problem. The matrices representing quantum gates,
and the vectors that model quantum states grow exponen-
tially with an increase in the number of qubits the quantum
analogue of the classical computing bit. Several software
packages have been developed for quantum circuit simula-
tion including Oemer’s Quantum Computation Language
(QCL) and Viamontes’ Quantum Information Decision Dia-
grams (QulDD) implemented in the QuIlDDPro package.
While QCL simulates circuits directly using state vectors,
QulDDPro uses a variant of binary decision diagrams to
store state vectors more compactly in some cases. Since the
state-vector representation requires excessive computational
resources in general, simulation-based reliability studies
(e.g. fault injection analysis) of quantum fault-tolerant archi-

10

15

20

25

30

35

40

45

50

55

60

65

2

tectures using general-purpose simulators has been limited
to small quantum circuits. Although certain stabilizer cir-
cuits have been identified and can be efficiently simulated on
classical computers, the stabilizer circuits are of limited use.
Stabilizer circuits must contain only stabilizer gates, which
do not form a universal set for quantum computation.
Therefore, stabilizer circuits alone do not permit efficient
simulation of general quantum circuits.

SUMMARY

Disclosed herein are a method and computer-readable
medium for the efficient simulation of quantum circuits
using classical computers. One embodiment includes a
method for maintaining global phases during simulation of
at least one quantum gate of a quantum computer using a
classical computer. The method includes the following:
receiving a quantum state that is a superposition of a
plurality of stabilizer states (wherein the quantum state is
represented by a stabilizer matrix associated with the plu-
rality of stabilizer states, a plurality of phase vectors repre-
senting each of the stabilizer states, and an amplitude vector
with each entry in the amplitude vector representing a global
phase associated with one of the plurality of phase vectors);
receiving a matrix representation of the at least one quantum
gate; and determining the effect of the at least one quantum
gate on the quantum state in a plurality of iterations, each of
which includes: applying one of the plurality of phase
vectors to the stabilizer matrix, determining an input basis
state associated with the one phase vector applied to the
stabilizer matrix, determining an input non-zero amplitude
associated with the input basis state, determining a first
output non-zero amplitude associated with an output basis
state by applying the matrix representation of the at least one
quantum gate to the input non-zero amplitude and the input
basis state, determining a second output non-zero amplitude
of the output basis state using the stabilizer matrix and the
matrix representation of the at least one quantum gate, and
adjusting the entry in the amplitude vector associated with
the one phase vector applied to the stabilizer matrix, wherein
the entry is adjusted proportionally to the first output non-
zero amplitude and the second output non-zero amplitude.
Another embodiment includes a tangible, non-transitory
computer-readable medium storing instructions for main-
taining global phases during simulation of at least one
quantum gate of a quantum computer using a classical
computer that, when executed by one or more processors of
the classical computer, cause the classical computer to
perform corresponding operations.

In some embodiments of the method and computer-
readable medium, at least one quantum gate of the quantum
computer is not a stabilizer gate (i.e., the quantum gate is not
a Hadamard, phase, or CNOT gate). In additional embodi-
ments, the a set of the quantum gates may form a universal
set for quantum computation (e.g., a set including a Had-
amard gate and a Toffoli gate). In still further embodiments,
the stabilizer matrix may be in canonical form, which greatly
simplifies operations such as implementation of gates and
measurement. Also to improve efficiency of the simulation,
further embodiments may include compressing the received
quantum state into a stabilizer frame (containing the stabi-
lizer matrix, the plurality of phase vectors, and the amplitude
vector), and then determining the effect of a plurality of the
quantum gates on the quantum state using the stabilizer
frame without uncompressing the stabilizer frame for mea-
surement until the plurality of quantum gates have been
applied to the quantum state. Thus, a general quantum circuit



US 9,477,796 B2

3

containing a plurality of (stabilizer or non-stabilizer) quan-
tum gates may be simulated efficiently while the quantum
state remains compressed (i.e., represented by a stabilizer
frame). In additional embodiments, a linear combination of
a plurality of mutually orthogonal stabilizer frames (i.e., a
muliframe representation) may be used.

Another embodiment includes a method for orthogonal-
ization of a linear combination of stabilizer states during
simulation of a quantum circuit using a classical computer.
The method includes the following: receiving a linear com-
bination of stabilizer states (wherein the linear combination
includes a plurality of stabilizer states represented by
canonical stabilizer matrices and a plurality of coefficients
associated with the plurality of stabilizer states); and
orthogonalizing the linear combination of stabilizer states in
each of one or more iterations, each of which includes:
identifying a column in which at least two of the canonical
stabilizer matrices contain different types of Pauli literals,
decomposing each of the stabilizer matrices that contain an
X orY Pauli literal in the identified column into a first matrix
and a second matrix (wherein the first matrix and the second
matrix represent stabilizer states that are nearest neighbors
of the stabilizer state associated with the decomposed sta-
bilizer matrix), determining a first global phase factor of the
first matrix and a second global phase factor of the second
matrix associated with each of the decomposed stabilizer
matrices, and replacing each of the decomposed stabilizer
matrices and their associated coefficients with (i) the first
matrix and a first coeflicient proportionate to the first global
phase factor associated with the decomposed stabilizer
matrix and (ii) the second matrix and a second coefficient
proportionate to the second global phase factor associated
with the decomposed stabilizer matrix. Another embodiment
includes a tangible, non-transitory computer-readable
medium storing instructions for orthogonalization of a linear
combination of stabilizer states during simulation of a
quantum circuit using a classical computer that, when
executed by one or more processors of the classical com-
puter, cause the classical computer to perform corresponding
operations.

In some embodiments, decomposing each of the stabilizer
matrices may further include (i) identifying a row in the
stabilizer matrix that contains an X or Y Pauli literal in the
identified column, (ii) causing every other row in the stabi-
lizer matrix that commutes with the identified row to anti-
commute with the identified row, (iii) creating the first
matrix from the revised stabilizer matrix by replacing the
row with a first new row containing a positive Z Pauli literal
in the identified column, and (iv) creating the second matrix
from the revised stabilizer matrix by replacing the row with
a second new row containing a negative Z Pauli literal in the
identified column. This will preserve the form of the stabi-
lizer matrix and remove redundant literals.

In further embodiments, the linear combination of stabi-
lizer states may comprise a linear combination of stabilizer
frames representing a quantum state, and the method or
computer readable medium may further determine the effect
of at least one quantum gate on the linear combination of
stabilizer states by applying a matrix representation of the
quantum gate to each of the stabilizer frames. The one or
more quantum gates may include at least one measurement
gate, and determining the effect of the measurement gate
may include determining an outcome probability of a state
using normalized outcome probabilities of the state in each
of the frames. In some embodiments, at least one of the
quantum gates is not a stabilizer gate (i.e., the quantum gate
is not a Hadamard, phase, or CNOT gate). In still further

20

30

40

45

55

4

embodiments, the operations of the other embodiments may
be implemented in parallel on at least two groups, with each
of the groups containing at least one of the stabilizer frames.

BRIEF DESCRIPTION OF THE DRAWINGS

The figures described below depict various aspects of the
applications, methods, and systems disclosed herein. It
should be understood that each figure depicts an embodi-
ment of a particular aspect of the disclosed applications,
systems and methods, and that each of the figures is intended
to accord with a possible embodiment thereof. Furthermore,
wherever possible, the following description refers to the
reference numerals included in the following figures, in
which features depicted in multiple figures are designated
with consistent reference numerals.

FIG. 1 illustrates an exemplary form of a stabilizer matrix
in canonical form.

FIG. 2 illustrates an exemplary form of a stabilizer matrix
in basis form.

FIG. 3 illustrates an exemplary stabilizer frame represent-
ing a quantum state as a superposition of stabilizer states.

FIG. 4 illustrates an exemplary simulation of the effect of
a Toffoli gate on a quantum state using a stabilizer frame.

FIG. 5 illustrates a flow diagram of an exemplary global
phase maintenance method.

FIG. 6 illustrates a flow diagram of an exemplary orthogo-
nalization method.

FIG. 7 illustrates a flow diagram of an exemplary decom-
position method.

FIG. 8 illustrates an exemplary multiframe representation
of a quantum state.

FIG. 9 illustrates a flow diagram of an exemplary parallel
simulation method.

FIG. 10 illustrates an exemplary block diagram of a
computer system on which the methods and techniques
described herein may be implemented in accordance with
the described embodiments.

DETAILED DESCRIPTION

Although the following text sets forth a detailed descrip-
tion of numerous different embodiments, it should be under-
stood that the legal scope of the invention is defined by the
words of the claims set forth at the end of this patent. The
detailed description is to be construed as exemplary only and
does not describe every possible embodiment, as describing
every possible embodiment would be impractical, if not
impossible. One could implement numerous alternate
embodiments, using either current technology or technology
developed after the filing date of this patent, which would
still fall within the scope of the claims.

It should also be understood that, unless a term is
expressly defined in this patent using the sentence “As used
herein, the term ° > is hereby defined to
mean . . . ” or a similar sentence, there is no intent to limit
the meaning of that term, either expressly or by implication,
beyond its plain or ordinary meaning (as would be under-
stood by a person having ordinary skill in the art), and such
term should not be interpreted to be limited in scope based
on any statement made in any section of this patent (other
than the language of the claims). To the extent that any term
recited in the claims at the end of this patent is referred to
in this patent in a manner consistent with a single meaning,
that is done for sake of clarity only so as to not confuse the
reader, and it is not intended that such claim term be limited,
by implication or otherwise, to that single meaning. Finally,



US 9,477,796 B2

5

unless a claim element is defined by reciting the word
“means” and a function without the recital of any structure,
it is not intended that the scope of any claim element be
interpreted based on the application of 35 U.S.C. §112(%).
As discussed above, the invention as described herein
relates to the simulation of quantum computing circuits
using a classical computer. As used herein, the term “clas-
sical computer” means any general use or specialized com-
puter based on classical physics that processes data using
one or more processors by implementing executable instruc-
tions stored in a computer-readable medium. This may
include one or more personal computers, laptops, servers, or
special-purpose computing devices. The term “classical
computer” is used in contrast to quantum computers, which
are based on quantum physics. Throughout this specifica-
tion, actions not otherwise attributed to a device should be
understood to be performed using a classical computer. In
some embodiments, this may include implementation by a
software program or module executed by the one or more
processors of the one or more classical computers. Simula-
tion of quantum circuits using classical computers is advan-
tageous in the development and testing of quantum com-
puters and related quantum computing devices.
Additionally, or alternatively, the methods described herein
may be useful in adapting algorithms developed for quantum
computers for implementation on classical computers.

Stabilizer Circuits and States

Stabilizer circuits form an important subclass of quantum
circuits that can be simulated efficiently on classical com-
puters. Stabilizer circuits are exclusively composed of sta-
bilizer gates—Hadamard (H), Phase (R), and controlled-
NOT (CNOT) gates followed by one-qubit measurements in
the computational basis. Such circuits may be applied to a
computational basis state (e.g., |00 . . . 0)) to produce output
states known as stabilizer states. Stabilizer states have
extensive applications in quantum error-correcting codes
and effective fault-tolerant architectures. Stabilizer circuits
can be efficiently simulated in polynomial-time by keeping
track of the Pauli operators that stabilize the quantum state.
Such stabilizer operators are maintained during simulation
and uniquely represent stabilizer states up to an unobserv-
able global phase, significantly reducing the computational
resources needed to simulate stabilizer circuits using vector-
based representations. This represents an exponential
improvement over vector-based quantum circuit simula-
tions. Although the stabilizer operators obtain this increase
in speed, the global phases of the computational states are
not maintained numerically in such simulations. As
described below, we develop a method of efficiently main-
taining the global phase and expand the scope of circuits that
can be simulated using stabilizer states.

We describe herein a generalization of the stabilizer
formalism to admit simulation of non-stabilizer gates, such
as Toffoli gates, possibly in addition to stabilizer gates.
Unlike previous attempts to maintain quantum states as
sums of density-matrix terms, we store quantum states as
superpositions of pure stabilizer states, thus improving both
memory usage and processing efficiency of the classical
computer. Reducing memory requirements is important to
quantum computing simulations because of the exponential
growth of memory requirements in relation to the number of
qubits in other simulation methods. Moreover, our approach
results in improved efficiency of processing capacity of the
classical computer, as described below with respect to
improvements in processing runtime order of magnitude, as

10

15

20

25

30

35

40

45

50

55

60

65

6

discussed below. Our approach allows more compact stor-
age without the need to handle mixed stabilizer states. In
order to simulate quantum states as superpositions of stabi-
lizer states, however, it is necessary to maintain the global
phases because the phases of the states become relative in
our approach.

Quantum information processes, including quantum algo-
rithms, are often modeled using quantum circuits and rep-
resented by diagrams. Quantum circuits are sequences of
gate operations that act on some register of qubits—the basic
unit of information in a quantum system. A single qubit is
described by a quantum state |y ), which is a two-dimen-
sional complex-valued vector. In contrast to classical bits,
qubits can be in a superposition of the 0 and 1 states.
Formally, ) =0,l0) +a;11),  where 10) =(1,007
and 11) =(0,1)7 are the two-dimensional computational basis
states and ¢, are probability amplitudes that satisfy o |*+
lo,; 1>=1. An n-qubit register is the tensor product of n single
qubits and thus is modeled by a complex vector Iy ) =y, )
® ... ®ly,)==,_,>"to,lb,), where each b, is a binary
string representing the value i of each basis state. Further-
more, " satisfies Z,_,>~!la,>=1. Bach gate operation or
quantum gate is a unitary matrix that operates on a small
subset of the qubits in

aregister. For example, the quantum analogue of a NOT gate
is the linear operator

@ol00) + @, [10) K% g |10) + @, 00)

Similarly, the two-qubit CNOT operator flips the second
qubit (target) if and only if the first qubit (control) is set to
1, eg.,

@0100) + 1)10) X% 20100) + a1 [11)

Another operator of particular importance is the Hadamard
gate (H), which is frequently used to put a qubit in a
superposition of computational-basis states, e.g.,

20l00) + ey 10) [ @0(|00) + | 01)) + a1 (1 10) + [11)
V2

It is important to note that the H gate generates unbiased
superpositions in the sense that the squares of the absolute
value of the amplitudes are equal. The final stabilizer gate is
the phase gate (R), which applies a phase-shift factor of €’
if the qubit is in the |1> state. These three stabilizer gates
may be represented in matrix form as follows:

n-35l )

e~(, )



US 9,477,796 B2

-continued
1000
0100
CNOT =
0001
0010

The dynamics involved in observing a quantum state are
described by non-unitary measurement operators. There are
different types of quantum measurements, including projec-
tive measurements in the computational basis (i.e., measure-
ments with respect to the basis states, viz. the distances of
the measured states from the 10) or 1) states). The corre-
sponding measurement operators are

and

respectively. The probability p(x) of obtaining outcome
x€{0,1} on the j* qubit of state lp) is given by the inner
product {IP /Iy, where {1l is the conjugate transpose of
lp) . For example, the probability of obtaining 11) upon
measuring 10) =0,10) +a,11) is

D=0 6,0% Py (0, 01) =(0,0% ) (Ctg, ) =len 12

The output states obtained after performing computa-
tional-basis measurements are called “cofactors,” and are
states of the form 10) Iy,) and 1) 1) . It is important to
note that these states are orthogonal to each other and add up
to the original state. We will use this property of cofactors
extensively to represent states as superpositions of orthogo-
nal stabilizer states. The norms of cofactors and the original
state are subject to the Pythagorean theorem. We denote the
10) - and 1) -cofactors by 11p°°) and hp°™'), respectively,
where c is the index of the measured qubit. One can also
consider iterated cofactors, such as double cofactors
[P0, 0ty | 7 10) | and hp? L. Cofactoring with
respect to all qubits produces amplitudes of individual basis
vectors.

To simulate a quantum circuit C, we first initialize the
quantum system to some desired state |y} (usually a basis
state). [ ) can be represented using a fixed-size data struc-
ture (e.g., an array of 2” complex numbers) or a variable-size
data structure (e.g., algebraic decision diagram). We then
track the evolution of ) via its internal representation as
the gates in C are applied one at a time, eventually producing
the output state Cly). Most quantum-circuit simulators
support some form of the linear-algebraic operations on
matrix representations of quantum states. The drawback of
such simulators is that their runtime and memory require-
ments grow exponentially with the number of qubits. This
holds true not only in the worst case, but also in practical
applications involving quantum arithmetic and quantum
fault-tolerant circuits. Our approach improves the memory
and runtime efficiency of such simulations using superpo-
sition of stabilizer states.

The stabilizer formalism presents a method of represent-
ing quantum states by keeping track of their symmetries,

10

15

20

25

30

35

40

45

50

55

60

65

8

rather than their complex-valued vectors and amplitudes.
The symmetries are linear operators for which the states are
1-eigenvectors. Algebraically, symmetries form group struc-
tures, which can be specified compactly by group genera-
tors. According to the stabilizer formalism, a unitary opera-
tor U stabilizes a state ) if and only if l¢) is a
1-eigenvector of the unitary operator U (i.e., Ulp) =hp)).
Several such stabilizer operators U can be derived from the
Pauli matrices:

01 0 i
(o=l V)
1o i 0

and

2=y 5}

The one-qubit states stabilized by the Pauli matrices are:
X: (10) +11))VZ =X: (10) =11))WV2
Y: (10) +11))A2 =Y: (10) =i11))W2
7:10) -7Z:11)

The identity matrix

is also a stabilizer matrix for all states, but —I does not
stabilize any state. As an example of the application of the
stabilizer operators, the entangled state

00y +11)
V2

is stabilized by the Pauli operators and the identity matrix:
X®X,Y®Y, Z®7Z, and I® 1.

Table I is a multiplication table of the Pauli operators X,
Y, and Z and the identity matrix 1. It should be noted that the
Pauli matrices X, Y, and Z and the identity matrix I form a
closed group under matrix multiplication with the multipli-
cative factors =1 and 1. Formally, the Pauli group g, onn
qubits consists of the n-fold tensor product of Pauli matrices,
P=i"P,® ... ®P, such that Pe{I,X.Y,Z} and ke{0,1,2,3}.
The tensor-product symbol may be omitted for brevity, so P
is denoted by a string of I, X, Y, or Z characters and a
separate integer value k for the phase i*. As used herein, the
term “Pauli literal” refers to any of the characters X, Y, or Z
and the term “literal” refers to any of the characters I, X, Y,
or Z. The string-integer pair representation allows us to
compute the product of Pauli operators using the Pauli
literals, without explicitly computing the tensor products
because (A® B)(C® D)=(AC®BD) for matrices A, B, C,
and D in the general case. For example, the product of
four-qubit Pauli groups (-IIXDEIYID)==iIYXI.
Since |G, |=4"*, G, can have at most log,| G, |=log, 4™*'=2
(n+1) irredundant generators. The stabilizer formalism is of
particular importance because it allows simulations of quan-
tum computers to represent an n-qubit quantum state |y ) by
its stabilizer group S(ly) ), which is the subgroup of G ,, that
stabilizes ) . If IS(ly ) )=2"I, then S(Iy ) ) can have at most



US 9,477,796 B2

9

log,IS(ly) )I=log, 2”=n irredundant generators, so the group
S(ly)) uniquely specifies ). Therefore, an arbitrary
n-qubit stabilizer state can be represented by a stabilizer
matrix M whose rows represent a set of generators
Q. ..., Q, for S(Iy) ). As used herein, a “stabilizer matrix™
M is a matrix whose rows represent a set of generators
Q, . . ., Q, for the stabilizer group S(ly)) for
a state | M ) . Although we refer to stabilizer matrices and
use matrix notation throughout, it should be understood that
other equivalent representations may instead be used (e.g.,
graphs). Since each Q,eS(Ip) ) is a string of n Pauli literals,
the size of the stabilizer matrix M is nxn. Therefore, the
storage cost of the stabilizer matrix M is O(n?) in the worst
case, which is an exponential improvement over the up to
O(2") storage cost of vector-based simulations. Furthermore,
Q,eS(1y) ) implies that the leading phase of Q, can only be
x] and not #i because Q,> cannot be -I, which does not
stabilize any state. The phases of all of the generator vectors
Q, can thus be stored in a phase vector o of n entries, with
each entry representing either a + or a — phase.

TABLE 1

Multiplication table for Pauli
matrices.

N ] =
N ] ==

Shaded cells indicate anticommuting products.

Although stabilizer states are uniquely determined by
their stabilizer groups G ,, the sets of generators Q, in the
stabilizer matrices M may be selected in different ways.
For example, the state

_[00) +111)

V2

v

is uniquely specified by any of the following stabilizer
matrices:

+[X X +[X X
My = , My =
+\Z Z -1Y Y
and
-[Y Y
M, = .
+|Z Z

M , may be obtained from M | by row multiplication, and
M ; may be similarly obtained from M |, or M ,. Multi-
plying any row by itself in these stabilizer matrices results
in II, which stabilizes the state [y} . A row made up of only
identity matrices I cannot be used as a generator Q,, how-
ever, because it is redundant and carries no information
about the structure of 1) . Any stabilizer matrix M can be
rearranged by elementary row operations to obtain a par-
ticular matrix structure, including reduced row echelon form

10

15

20

25

30

35

40

50

55

60

65

10

(canonical form), without modifying the stabilizer state.
Such elementary row operations include transposition
(swapping the order of rows) and multiplication (left-mul-
tiplying a row by another row). Using Gaussian elimination,
a stabilizer matrix M can be reduced to canonical form as
illustrated in FIG. 1. The canonical form of a stabilizer
matrix M contains an X-block and a Z-block, such that the
X-block contains a minimal set of rows with X or Y Pauli
literals. The Z-block contains rows that only include Z Pauli
literals and 1 literals, and the Z-block likewise contains a
minimal set of rows with Z Pauli literals. Additionally, the
number of Pauli literals in each of the X-block and the
Z-block is minimal. The X-block and the Z-block, respec-
tively, contain an X-diagonal and a Z-diagonal. All Pauli X
and Y literals are found on or above the X-diagonal within
the X-block. Similarly, all Pauli Z literals are found on or
above the Z-diagonal in the Z-block or in the X-block. Only
1 literals are found below the Z-diagonal within the Z-block.

In some embodiments, the Gaussian elimination proce-
dure may implement the following Algorithm 1 in Table II
to obtain the canonical form of the stabilizer matrix M .
Algorithm 1 starts with the stabilizer matrix M and itera-
tively determines which row operations to apply based on
the Pauli literals contained in the first row and column of an
increasingly smaller submatrix A of the full stabilizer matrix
M . After the appropriate row operations are applied to the
submatrix A, the dimensions of the submatrix A are reduced
for the next iteration. Algorithm 1 performs the process in
two parts. First, the algorithm positions the X and Y Pauli
literals at the top of the stabilizer matrix M . Second, the
algorithm positions the Z Pauli literals at the bottom of the
stabilizer matrix M . Specifically, take an nxn stabilizer
matrix M | with rows indexed by ie{1, . . ., n} and columns
indexed by je{l, . . .
associated with the first row and column, respectively, of the
submatrix A. In each iteration of the first part of Algorithm
1, the following steps are iteratively performed. First, iden-
tify a row R, with index ke{l, . . ., n} in the submatix A
whose j” literal is X or Y, and swap row R, with row R,.
Second, find any additional rows R, with index
me{1, ..., n} such that m=i that has an X or Y Pauli literal
in the j” column, and left-multiply the row R,, by row R, to
set the j literal of row R, to Z or 1. Third, reduce the height
of the submatrix A by one (i.e., set i=i+1), and reduce the
width of the submatrix A by one (i.e., set j=j+1). Once the
first part of Algorithm 1 is finished, the second part is
iteratively performed to reduce the set of Z Pauli literals in
the Z-block to the minimal set. Without resetting the row
index i, the second part begins by resetting the column index
j=1. The second part of the algorithm then iterates over j by
implementing the following steps. First, identify a row R,
with index ke{1, . .., n} in the submatix A whose j* literal
is Z, and swap row R, with row R, Second, find any

, n}, where i and j are the indices

additional rows R, with index me{1, . . ., n} such that m=i
that has an Z or Y Pauli literal in the j** column, and
left-multiply the row R, by row R, to ensure the columns of
the canonical stabilizer matrix M have at most two distinct
types of Pauli literals. Third, reduce the height of the
submatrix A by one (i.e., set i=i+1), and reduce the width of
the submatrix A by one (i.e., set j=j+1).



US 9,477,796 B2

11
TABLE 1II

12

Input: Stabilizer matrix ¢ for S(Iy)) with rows Ry,...,R,,
Output: M is reduced to row-echelon form
= ROWSWAP(-,i,j) swaps rows R; and R; of -1
= ROWMULT( *,i,j) left-multiplies rows R; and
liie1
2: for j € {1, .,n} do

R;, returns updated R;

3

4: if k exists then

51 ROWSWAP( A ,ik)
6 for m € {0,...,.n} do

7 if j literal of R,, is X or Y and m = i then
8 R, = ROWMULT( -, R, R,)

9: end if

10: end for

11: i—i+1

12:  endif

13: end for

14: for j € {1,...,n} do

15: k< index of row Rygy; ., With i literal set to Z
16:  if k exists then

17: ROWSWAP( A7,1.k)

18: for m € {0,...,.n} do

19: if j literal of R,, is Z or Y and m = i then
20: R, = ROWMULT( i, R, R,)

21: end if

22: end for

23: i—i+1

24:  endif

25: end for

> Setup X block

2 Gauss-Jordan elimination step

& Setup Z block

© Gauss-Jordan elimination step

Using the canonical form of a stabilizer matrix M allows
us to simulate quantum circuits efficiently (as described
below) by maintaining the structure of the stabilizer matrix.
For deterministic computational basis states (e.g., 100 . .
0)), the canonical stabilizer matrix will contain only Z. and
I literals because each qubit is either 10) or 11}, but not a
superposition. Therefore, a stabilizer matrix is in basis form
if it has Z Pauli literals along its diagonal and I literals
everywhere off its diagonal, combined with a phase vector
0. FIG. 2 illustrates the form of a stabilizer matrix in basis
form. Because the basis state is deterministic, the basis form
stabilizer matrix has only Z Pauli literals along its diagonal,
and only I literals in every other position. The leading +
signs indicate the entries in the associated phase vector o
may be either + or — for each row. In this basis form, the
sign of each row j and its correspondlng Z, literal designates
whether the state of the j* qublt in the basis
state ) associated with the stabilizer matrix M is10) (+)
or 11) (-).

To simulate a quantum circuit C containing a sequence of
quantum gates UeC, the basis stabilizer matrix M corre-
sponding to the basis state ly) is used. To simulate the
action of each gate U, we conjugate each row Q, of M by
U. Since Q;hp} =h} ), the resulting state Uly) is stabilized
by UQ,UYt because (UQ, UH)Ulyp)=UQ,lp)=Uly). In
order to ensure that resulting output matrix M' is a well-
formed stabilizer matrix, it is necessary that UQ,U7 maps to
another string of X, Y, Z, and 1-literals. The Hadamard (H),
Phase (R), and controlled-NOT (CNOT) gates have such
mappings. Table III lists the Pauli literal mappings for each
of these gates. As an example of simulation using the
stabilizer representation described above, the operation of a
CNOT gate on a basis state of

003 +11)

) = o)

35

40

45

50

55

60

65

can be represented as follows:

M, =
YT

X X +
}E”ﬂM&, =
zZ Z +

XI}
I Z

It should be noted that the rows of the output matrix M ',
stabilizes

cvor |00) +[10)
) ol

TABLE III

Conjugation of Pauli-group elements by stabilizer
gates [18]. For the CNOT case, subscript 1
indicates the control and 2 the target.

GATE ~ INPUT OUTPUT GATE  INPUT  OUTPUT
H X z CNOT LX, LX,
Y -Y X, L X, X,
z X LY, 7Y,
P X Y Y, L Y, X,
Y -X L, Z, A
z z Z L Z L

Since the H, R, and CNOT gates can be simulated directly
using stabilizers, these gates are commonly called “stabilizer
gates,” and circuits including only stabilizer gates are
referred to as unitary “stabilizer circuits.” To simulate a
stabilizer gate using a stabilizer matrix M , Table III of
conjugations of Pauli-group elements by stabilizer gates
indicates that at most two columns of the stabilizer matrix
M must be updated. Thus, stabilizer gates are simulated in
O(n) time. Furthermore, for any pair of Pauli operators A
and B, ABAT=(-1)°B"t, where c¢=0 if A and B commute and
c=1 otherwise. Thus, Pauli gates can also be simulated in
linear time as they only permute the phase vector of the
stabilizer matrix.



US 9,477,796 B2

13

The stabilizer formalism also admits measurements in the
computational basis and conveniently avoids direct compu-
tation of projection operators and inner products. Note that
any qubit j in a stabilizer state is either in a state of 10) or
I1) (a deterministic outcome) or in an unbiased superposi-
tion of both 10) and |11} (a random outcome). Deterministic
and random outcomes may be differentiated in O(n) time by
searching for X or Y Pauli literals in the j column of M .
Where such X or Y literals are found, the j* qubit must be
in superposition, and the outcome is random with equal
probability (e.g., (p(10)=p(11) )=0.5). Where such X or Y
literals are not found, the j” qubit is deterministic (e.g.,
p(10)=1 or p(11} »=1).

To measure the random outcome case, the j* qubit may be
updated using any known means of obtaining a random
binary measurement (e.g., equivalent to the flip of an unbi-
ased coin) may be used to obtain a deterministic outcome for
the j* qubit. For example, a random number generator may
be used to determine whether the j* qubit should be updated
to 10) or I1) . In the stabilizer matrix M | this corresponds
to replacing the row R; with an X or Y literal in its i column
with a row 7, with a Z literal in its i? column and T literals
elsewhere. The phase of row Z, is set in the phase vector o
of M to match the deterministic state of qubit j (e.g., 10) or
11)). Since rows R, and Z, anticomnmte, the stabilizer
matrix M may then be examined for rows that anticom-
mute with row Z; and updated by multiplying such anticom-
muting rows by R; to make them commute with row Z,.
Alternatively, the rows of M’ that anticommute with Z; may
be updated prior to replacing row R; with row Z,.

To measure the deterministic outcome case, the sign of the
Z literal that stabilizes the qubit must be determined. In
some embodiments, Gaussian elimination may be applied to
reduce the stabilizer matrix M to row-echelon form. This
removes redundant literals from the stabilizer matrix M ,
allowing identification of row 7, with a Z literal in its i
column and 1 literals elsewhere. Alternatively, if M is
maintained in reduced row-echelon form, the row Z, is
simply identified. Once row Z, is identified, the phase of the
Z literal associated with the j’% qubit is determined from the
corresponding entry in the phase vector o.

In quantum mechanics, the states ¢®ly) and 10) are
considered phase-equivalent because € does not affect the
statistics of measurement. Since the stabilizer formalism
simulates stabilizer gates using their action by conjugation,
such global phases are not maintained. For example, a basis
state of 11) is stabilized by the literal —-Z. Conjugation by
the phase gate R yields R(-Z)RT, but the phase-vector
representation

1y S a1y

indicates that the phase gate R applied to basis
state |1} should yieldill) . Inthis example, the global phase
iis not maintained by the stabilizer formalism. Since global
phases are unobservable, they do not need to be maintained
when simulating a single stabilizer state. When dealing with
superpositions of stabilizer states, however, the global
phases must be maintained because the global phases
become relative.

Stabilizer Frames

The stabilizer gates discussed above do not by themselves
form a universal set for quantum computation. In some

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments, therefore, simulation of a quantum computer
may include at least one quantum gate of the quantum
computer that is not a stabilizer gate. The Hadamard (H) and
Toffoli (TOF) gates, for example, do form a universal set.
The TOF gate is a 3-qubit gate that maps (c,, ¢,, t) to (¢, Cs,
D(c,c,)), having the effect of a controlled-CNOT gate. The
H gate is a stabilizer gate, but the TOF gate is not. To
simulate TOF and other non-stabilizer gates, we extend the
stabilizer formalism to include the representation of arbi-
trary quantum states as the superpositions of stabilizer
states. Since computational basis states are stabilizer states,
any one-qubit state ) =a,10) +a,I1) is a superposition of
the two stabilizer states 10) and |11) . In general, any state
decomposition in a computational basis state is a stabilizer
decomposition. Note that if lh) is an unbiased superposi-
tion such that lot, 1°=la., 1%, then Iy} can be represented using
a single stabilizer state, up to a global phase. This underlies
our method of identifying and compressing large unbiased
superpositions on the fly during simulation to reduce
resource requirements. To do this, we develop a simulation
technique based on stabilizer frames of orthogonal stabilizer
states.

As used herein, an n-qubit “stabilizer frame” F is a set of
k=2" stabilizer states {j) } _,” that forms an orthogonal
subspace in the Hilbert space. The stabilizer frame F may
be represented by a pair consisting of (i) the stabilizer matrix
F and (i) a set of distinct phase vectors {o,}, ,*. 0,_,%,
where oe{+1}”. We denote the ordered assignment of the
elements in phase vector o;, as the (z1)-phases of the rows
of M by matrix M ¥. The size of the frame |F | is equal
to k. To represent an arbitrary state | ¥) using the frame F ,
we maintain an additional amplitude vector a=(at,, . .., &)
of complex amplitudes corresponding to the decomposition
of I¥) in the basis {Iy,) } _,* defined by the frame F, i.e.,
W) =%, *oly,) and X,_*<la,I>=". Note that each ampli-
tude ¢, forms a pair with the corresponding phase vector o,
since ;) =M ¥,

Simulation using the stabilizer frames represents any state
W) as a superposition of stabilizer states. For example,
FIG. 3 represents a state |¥) =a(100)+101) )+, (110)+111) )
as a stabilizer frame F with stabilizer matrix

7 x)

phase vectors 0,=(+,+) and 0,=(-, +), and amplitude vector
a=(a.;, a,). As noted above, the stabilizer matrix M can be
combined with the set of phase vectors o to obtain

and

Note that, although the state W) has four computational
basis amplitudes, the frame only has two phase vectors o,
and o,. Where |a, I>=la,|?, the frame F can be manipulated
to reduce its size |F |, as discussed below.



US 9,477,796 B2

15

As another example, the action of the TOF gate on an
n-qubit state W) with control qubits ¢, and ¢, and target
qubit t can be simulated using the frame F illustrated in
FIG. 4. First, we decompose |¥) into all four of its double
cofactors over the control qubits to obtain the following
unbiased superposition of orthogonal states:

[WeL2=00y 4 [pere2=0ly . pperea=10ygerep=ily

W) = >

Then, the action of the TOF gate may be computed as
follows:

TOF . ., > :(\wCICZZO(’} +hpete=oL > .
‘w6162:10> +X peterLl > 2

where X, is the Pauli X gate (corresponding to a NOT gate)
acting on the target qubit t. As in the example above, each
double cofactor |wclcz> is represented by the same stabilizer
matrix

=

I
-~ N
- N~

N o~ ~

but each double cofactor I, . ) has a distinct phase vector:
0c1c2:00:(+s +, +)s Gcch:lO:(—, + +)s 0c1c2:01:(j"3 = +)s al?d
05152:}1:(—5 -, +). The four phase vector-stabilizer matrix
combinations

M Te1ep=00 P Te1oa=10 A Tcpep=01 M Tcpep=1l

are also represented in FIG. 4. Note that the phase vector
O,,c,—=11 and the phase vector-stabilizer matrix combination

MU-CI cp=11

may be updated to simulate the action of the X, gate. Thus,
:(_s ) _)s and

00102:11

MTere=11 = _

— o~ N
- N~

N o~ o~

An amplitude vector a=(C. -, —00» Qe c,-100 G017 Fyom11)
. . . . . 127 L C1e27 152 1¢2

is likewise maintained. Enabling simulation of the TOF gate
is particularly important because the TOF gate and the H
gate form a universal set for quantum computation, and the
H gate is a stabilizer gate.

Like the TOF gate, the controlled-phase gate R(at),, can
also be simulated using stabilizer frames. The controlled-
phase gate R(a)_, applies a phase-shift factor of &* to a
target qubit t if both the target qubit t and a control qubit ¢
are set (i.e., c=1 and t=1). It is used with the H gate to
implement the quantum Fourier transform circuit, which
plays a key role in Shor’s factoring algorithm. With cofac-

10

15

20

25

30

35

40

45

50

55

60

65

16

toring, the action of the R(),., gate on a state [¥) may be
computed as follows:
RO ) =) ==t} 1) +

eicx‘wct:ll & )2
This can be simulated on a classical computer by cofactoring
W) over the ¢ and t qubits, determining the phase vectors
oe{l, , IF 1}, and setting the amplitude vector
ae{a), . . ., o,F }. Then, for every phase vector g,
corresponding to the W'} cofactor, shift the phase of the
i qubit by setting (xj:ajei“. Note that this may result in a
biased superposition.

Since the states in a stabilizer frame F are orthogonal, the
outcome probability when measuring the output of a circuit
simulated using the stabilizer frame F is equal to the sum
of the outcome probabilities of each state 1\,) , normalized
with respect to the entries in the amplitude vector a. Thus,
for a superposition of states W) =2,0,1y,) represented by
F, the probability of observing an outcome xe{0,1} upon
measuring qubit m is

k k
pOg = D lalPWil P = 3 el plog
i=1 i=1

where P.” denotes the measurement operators P, and P,
discussed above. As discussed above, the probability p(X)y
can then be used to determine an outcome state 10)

or |1) using a random number generator or other means of
obtaining a binary outcome from a known probability. The
frame M may then be cofactored such that only the states
consistent with the measurement remain in the frame M .

Efficient Computation of Global Phases

As noted above, simulation of superpositions of stabilizer
states using stabilizer frames requires tracking the relative
global states of the stabilizer states. In quantum mechanics,
the states €®lp) and hp) are considered phase-equivalent
because € does not affect the statistics of measurement.
During stabilizer-based simulation, such global phases are
not maintained. Since these phases are unobservable, this is
not a problem when simulating a single stabilizer state. We
manipulate superpositions of states, however, so the global
phases become relative and must be maintained. As dis-
cussed above, we maintain the global phases of n-qubit
states in stabilizer frames F using amplitude vectors a.,
such that each entry ae{l, . . . , k} is a global phase
corresponding to phase vector o, and stabilizer matrix M %.
To maintain the global phase when simulating quantum gate
U, each global phase o, is updated using a global phase
maintenance method in accordance with the description
herein.

FIG. 5 illustrates a flow diagram of an exemplary global
phase maintenance method 500. The method 500 begins at
block 502, when a representation of a quantum state ) and
a quantum gate U are received by a processor of a classical
computer simulating a quantum circuit. The quantum state
lp) and a quantum gate U may be stabilizer or non-
stabilizer states or gates. The classical computer may then
determine a stabilizer frame F representing the quantum
state ) as a superposition of stabilizer states at block 504.
The stabilizer frame F includes one or more stabilizer
matrices M , a plurality of phase vectors o, corresponding
to the k stabilizer states in F, and an amplitude vector a
corresponding to the phase vectors o,. In some embodiments
the quantum state [} may be received as a stabilizer frame
F, in which case block 504 may be removed. The classical



US 9,477,796 B2

17
computer then iterates through the stabilizer states in F for
all je{1, . . ., k}. At block 506, the classical computer
determines whether the quantum gate U has been applied to
each pair of phase vectors oe{l, . . ., k} and amplitudes
ae{l, ..., k}. This may be accomplished by means of a for
loop (e.g., with counter i=1, . . . , k) or by other known

means. When the quantum gate U has been applied to all
phase vectors o, (i.e., after k iterations), the implementation
of the method 500 is complete. Prior to completion, blocks
508-518 are applied for each je{1, . . ., k}.

At block 508, the classical computer sets the leading
phases of stabilizer matrix M to the values in phase vector
0, to produce stabilizer matrix M < for some je{1, ..., k}
that has yet to be updated by application of the quantum gate
U. Next, the classical computer determines an input basis
state |b) of the matrix M ¥ prior to application of the
quantum gate U at block 510. Similarly, the non-zero
amplitude of the basis state Ib) is determined at block 512.
At block 514, the classical computer computes the action of
the quantum gate U on the basis state as U(BIb) )='Ib') via
matrix-vector multiplication using the matrix representation
of U and the vector representation of §Ib) . The first output
non-zero amplitude ' is obtained from the output basis state
Ib'y and stored. At block 516, the classical computer deter-
mines a second non-zero amplitude y of basis state |b') from
UM Ut. Finally, the global phase o, in the amplitude vector
a is updated at block 518 as

a;fp
Y

=

Where the quantum gate U is a Hadamard gate, the
non-zero amplitude may be determined as the sum of a real
and a complex non-zero amplitude in block 512. For
example, where 1)) =(100) +/01) —il10) -i111)) (with the
normalization factor omitted for simplicity), the generator
set for M is {-YLIX}. The orthonormal basis
states 100) and i110) are obtained from M | and the non-
zero amplitude f=1 (the amplitude of |00 M ). The action of
the H gate at block 514 is computed as

L+
V2

. (-0
Hy(J00) +10)) = —2|00> + 110},

V2

SO

_ (-9

=5

Then, at block 516, the amplitude of 100) is obtained from
H, M H,t={YLIX}, which yields y=1. The global phase
may then be adjusted by the global phase factor

g _(-p

Y N2

In some embodiments, Gaussian elimination may be used
to determine the non-zero amplitudes f3, p', and y. In other
embodiments, the non-zero amplitudes 3, p', and y may be
sampled from the leading phases o, and the literals of

10

30

35

40

45

50

60

65

18

M where the stabilizer matrix M is in row-echelon form.
Performing Gaussian elimination on all stabilizer matrices
M in F requires O(®|F |) time (in the worst case). Since
stabilizer gates affect at most two columns of M | the
stabilizer matrix M may be maintained in row-echelon
form in the worst case in O(n?) time using row multiplica-
tion. Therefore, for the n-qubit stabilizer frame F, the
overall runtime for simulating a single stabilizer gate is up
to O(n*+nlF 1), since the updates to M required to compute
each o, can be memorized using known techniques to avoid
redundant computation. For this reason, it is advantageous to
maintain the stabilizer matrix M in row-echelon form
throughout the simulation.

Orthogonalization of Linearly Dependent
Combinations of Stabilizer States

As discussed above, measurement of frames and other
combinations of quantum states is simplified where the
states are mutually orthogonal. To simulate measurements of
an arbitrary state W), therefore, it is helpful to transform
the set of stabilizer states that represent %) into an orthogo-
nal set. For any linear combination of stabilizer
states W) =X "c\,) where each stabilizer state l},) is
represented by its own stabilizer matrix, we can transform
the stabilizer states I} into an orthogonal basis by decom-
position.

Since a linear combination of stabilizer states is not
generally a stabilizer state, Gram-Schmidt orthogonalization
cannot be use directly. Therefore, we develop an orthogo-
nalization procedure that exploits the nearest-neighbor
structure of stabilizer states and their efficient manipulation
via stabilizers. As used herein, a stabilizer state 1¢) is a
“nearest-neighbor” of a stabilizer state I} with |l ||=1 if
and only if

1
I<¢|¢>I—ﬁ-

Where two orthogonal stabilizer states la.) and If) have an
unbiased superposition hp) that is also a stabilizer state,
then

1
[ ladl =Kyl Bl = ol

sola) and If) are nearestneighbors of ) . In general, any
two stabilizer states have an equal number of nearest neigh-
bor stabilizer states. Furthermore, any n-qubit stabilizer state
lp) has 4(2”-1) nearest-neighbor stabilizer states of the
form

() + e
G

where 1€{0,1,2,3} and where ) and I¢p} are orthogonal
n-qubit stabilizer states. We can thus decompose |y} into a
superposition of nearest-neighbor stabilizer states

(¢) + 'lp))
V2



US 9,477,796 B2

19

using Algorithm 2 in Table IV. Algorithm 2 takes as input a
linear combination of n-qubit states represented by (i) a list
of stabilizer matrices in canonical form M={M !, .,
MM and (i) a list of corresponding coefficients
C={cy, . . ., cx}. Algorithm 2 iterates over the columns
je{l, , n} to select pivot columns where the column j
differs between two matrices M ‘e M in lines 1-10. When
two matrices in M are found to differ in their, i columns,
Algorithm 2 applies a decomposition procedure to all matri-
ces M ‘eM in lines 11-20, thereby making column j equiva-
lent up to a phase-vector permutation in each of the matrices
in M.

TABLE IV

10

20

blocks 604-616 to identify dissimilarities and decompose the
dissimilar matrices into similar matrices.

In block 606, the classical computer identifies a pivot
column by determining a column containing different types
of Pauli literals in at least two matrices in M. In some
embodiments, the process may compare the literals of a test
column in each matrix M ‘eM only until a first pair of
matrices in M with different types of Pauli literals is iden-
tified using known techniques. Additionally, or alternatively,
the classical computer may compare one or more columns in
each matrix M ‘eM until a column is located where two or
more matrices in M differ either in the types of Pauli literals

Input: Linear combmatlon of n-qubit states ljp? =
matrices M = { 54!

. cjhp ) represented by (i) a list of canonical stabilizer
ANV and (i) a list of coefﬁments C = {cp,Cn}

Output: Modified lists M' a.nd C' representing a linear combination of mutually orthognal states
= PAULI(M,j) returns 0 if the j column in M has Z literals only (ignores 1 literals), 1 if it has X literals
only, 2 if it has Y literals only, 3 if it has X/Z literals only, and 4 if it has Y/Z literals only

= REMOVE(M,C,j) removes the j” element in M and C
=
sets

)

A ,_, is the nearest-neighbor canonical matrix with the j*

1: for j € {1,...,n} do
2: b<0
3: | < PAULI(&1, j)
4:  foreach M7 i€ {2,.,.N} do
5: k =< PAULI( 247, j)
6: if k = | or the rows with Pauli literals in the j* column are distinct then
7: b1
8: break
9: end if
10:  end for
11:  ifb =1 then
12: for each 37 i € {1,..,.N} do
13: [-4,¢' @] < DECOMPOSE( 4%, j, 0)
14 [ ,_%, p] = DECOMPOSE( 4, j, 1)
15: REMOVE(M, C, i)
16: INSERT(M, C, -+ - 0’ aN7)
17: INSERT(M, C, 4,_/', pV2)
18: end for
19:  endif
20: end for

INSERT(M,C, - ¢) appends -*{to M and ¢ to C if an equivalent matrix does not exist in M: otherwise,
¢; = ¢; + ¢, where ¢; is the coefficient of the matrix in M that is equivalent to -4
DECOMPOSE( ES R E {0, 1}) implements the proof of Proposmon 5.5 and returns the pair [ &

a], where

jaa

" qubit in state la), and a is the phase factor

FIG. 6 illustrates a flow diagram of an exemplary orthogo-
nalization method 600. The method 600 begins at block 602
with the classical computer receiving a linear combination
of stabilizer states represented by a list of stabilizer matrices
in canonical form M={ M !, , M and (ii) a list of
corresponding coefficients C={c,, . . . , ¢, }. In some
embodiments the stabilizer states may be represented by one
or more frames F or in another manner, in which case the
classical computer may next determine the stabilizer matri-
ces in M and coefficients in C from the linear combination
of stabilizer states. Additionally, or alternatively, the stabi-
lizer matrices in M may not be in canonical form, in which
case the process described above or other known techniques
may be used to put the matrices into canonical form. At
block 604, the classical computer determines whether all
matrices M ‘eM are similar. As used herein, a plurality of
stabilizer matrices are “similar” if the matrices are equiva-
lent up to a phase-vector permutation. The classical com-
puter may determine whether all matrices M ‘eM are similar
in a variety of ways, including comparing the matrices by
known techniques. Alternatively, an iterative mechanism
(e.g., a loop counter) may be used in some embodiments,
such as the embodiment in Table V. When all matrices
M ‘eM are similar, the method 600 ends. Until all matrices
M ‘eM are similar, the classical computer iterates through

45

55

60

contained therein or in the rows in which the Pauli literals
are located. Once a column j has been identified in block
606, the classical computer may identify one or more
matrices M ‘€M containing at least one X or Y Pauli literal
in column j. Each matrix M “eM is then decomposed into
two of its nearest-neighbor stabilizer states at block 610.

FIG. 7 illustrates a flow diagram of an exemplary decom-
position method 700 for decomposing state 10) represented
by a matrix M ‘eM with an X or Y Pauli literal in its j*
column into its two nearest-neighbor stabilizer states defined
by

(Ip) + i'|o))
5

At block 702, a stabilizer matrix M ? with an X or Y literal
in its i column is received. This may be the same matrix
identified in block 608 of method 600. At block 704, the
classical computer identifies one row R; within the matrix
M *with an X or Y literal in its j** column It should be noted
that the row R; anticommutes with a Pauli operator Z,, which
is a row Vector containing a Z literal in its j” column and [
literals elsewhere. Since the stabilizer matrix M * will be
decomposed into two nearest neighbors of Iy ) by replacing



US 9,477,796 B2

21

R; with 7, » any addltlonal rows W =R, in M ? containing an
XorY hteral in their j” columns may ’be made to commute
with Z; by multiplication by R,. Thus, at block 706, the
classical computer determines whether there is another row
W =R, in matrix M ! that anticommutes with Pauli operator
7, Where such a row is found, the classical computer
multiplies the row W, by the row R, to make it commute with
the Pauli operator Z Block 706 and 708 are repeated until
no further rows W, are found, at which point the matrix M
is decomposed iito two matrices representing orthogonal
nearest-neighbor stabilizer states of ) . At block 710, the
classical computer decomposes the matrix M ‘eM into a
first matrix M ® by replacing the row R; with Z,. At block
712, the classical computer similarly decomposes the matrix
M " into a second matrix M * by replacing the row R, with
the row -Z,. The steps implemented at blocks 710 and 712
are equlvalent to applying +Z -measurement projectors
to 1y} . Thus, the first matrix M ® and the second matrix
M ¢ represent the nearest-neighbor stabilizer states

_UHZ
¢y = —
and
_U=Z)W
le) = -

It should be noted that the first and second matrices M ¢
and M ? are similar and that

1
K 1) =K | o) = R
so the first and second matrices M ® and M ¢ are orthogo-
nal. Additionally, the j” qubits in I®) and Ip) are deter-
ministic with states 10) and 1), respectively. Thus, the
state [} ) represented by matrix M ’ has been decomposed
into orthogonal stabilizer states |®) and I¢p) represented by

the first and second matrices M ® and M ?, respectively.
From the discussion above,

(Ip) + £10))
V2

represents a nearest-neighbor decomposition of hp). To
fully represent l) by its decomposition, the global phase
factor i’ is needed.

Returning to FIG. 6, at block 612, the global phase factors
o and P of the first and second matrices M ® and M ¢,
respectively, are determined using the procedure described
in the global phase maintenance method 500 as applied to
the matrix M * and coeflicient c,. At block 614, the classical
computer sets the coefficients cq)eC and cyeC of the first and
second matrices M ® and M ¢ as

.
V2

Cg =

10

15

20

25

30

35

40

45

50

55

60

65

22

and

At block 016, the classical computer replaces the matrix
M “eM and c,eC with the first and second matrices M ® and
M ® and their respective coefficients cg, and cg. In some
embodiments, the classical computer may determine
whether either or both of the first and second matrices M
and M ® are equivalent to existing matrices M #eM and
M €M, respectively. If equivalent matrices M # or M 7 are
found, then the classical computer may set the coefficients
¢,=C,+c,and ¢, =c +c,. Where either the first matrix M ®or
the second matrix or M ® is not equivalent to any matrix in
M, then the first matrix M ® or the second matrix or M ¢
is added to M and the respective coefficient cg, or ¢, is added
to C. Once all matrices in M are determined at block 604 to
be similar (and, therefore, orthogonal), the method 600
terminates.

Multiframe Simulation

Although a single frame F is sufficient to represent a
stabilizer-state superposition W) , it is possible to tame the
exponential growth of states in W) in some circumstances
by admitting a multiframe representation. A multiframe
representation reduces the total number of states required to
represent W) by at least half, thus improving the scalability
of our technique. For example, in simulations of ripple-carry
adders, the number of states in I¥) grows linearly when
multiframes are used but exponentially when a single frame
is used. We derive a multiframe representation directly from
a single frame F by examining the set of phase vectors and
identifying candidate pairs that can be coalesced into a
single phase vector associated with a different stabilizer
matrix M . We maintain the stabilizer matrix M of frame
F in row-echelon form, so examining the phases corre-
sponding to Z, rows (i.e., rows with a Z literal in the i
column and I literals elsewhere allows us to identify the
columns in M that must be modified in order to coalesce
candidate pairs.

FIG. 8 illustrates an exemplary multiframe representation
of a state |¥) =1000) +1010) +/1100) +1100) . The stabilizer
matrix M ! is obtained from stabilizer matrix M by con-
jugating the first column of M by an H gate. The stabilizer
matrix M 2 is obtained from stabilizer matrix M by first
conjugating the first column of M by an H gate, then
conjugating the first and third columns of modified M by a
CNOT gate. The output of this coalescing process is a list of
frames F | and F | that together represent the same super-
position as the original frame F. To facilitate quantum
measurements on multiframes as the sum of normalized
outcome probabilities as discussed above, we require that
the stabilizer frames that represent a superposition of stabi-
lizer states remain mutually orthogonal during simulation.
Orthogonality may be maintained by selecting only candi-
date pairs such that the new frames generated from the set
of coalesced phase vectors are mutually orthogonal. Gener-
ally, a pair of phase vectors { o,/0,) from the same n-qubit
frame F is a candidate pair if and only if (i) o, and o, are
equal up to m=n entries corresponding to 7, rows (where k
is the qubit the row stabilizes) and (ii) the amplitudes of the
global phases o, and o, corresponding to phase vectors o,
and o, respectively, are equivalent up to a phase, i.e.,



US 9,477,796 B2

23
a,=i%, for some {de{0, 1, 2, 3}. The stabilizer circuit
needed to coalesce a candidate pair ( 0,l0,) with m different
entries can be defined as C=CNOT,, CNOT,, . ..
CNOT,,,, RVld H,, where each VkEV:{Vl, Vay o ooy Vit
designates the qubit stabilized by the m different entries in
the candidate pair  o,l0;) .

To coalesce the candidate pairs of the frame F into a
multiframe representation, the phase vectors o, are sorted
such that candidate pairs { o,lo;) are positioned next to
each other. Then, the following two steps are repeated until
no candidate pairs remain. First, coalesce candidate pairs
into a new set of phase vectors o'. Next, create a new frame
F' consisting of the phase vectors ¢' and the stabilizer
matrix CM Ct. The output of this coalescing procedure is
a list of n-qubit frame F={F', F',, ..., F' } that together
represent the same superposition as the original input frame
F . The runtime of the coalescing procedure is dominated by
the sorting of the phase vectors, where each phase-vector
comparison takes O(n) time. Therefore, the overall run time
is O(nk log k) in the worst case for a single frame F with
k phase vectors.

To simulate stabilizer, TOF, controlled-R(a), and mea-
surement gates using multiframes, the single-frame opera-
tions are applied to each frame separately as discussed
above. For TOF and controlled-R(ct) gates, the following
additional steps may be required. First, apply the coalescing
procedure to each frame and insert the newly coalesced
frames into the list F'. Second, merge frames in F' with
equivalent stabilizer matrices M . Then, repeat the first and
second steps until no new frames are generated.

Parallel Simulation Using Frames

Unlike other techniques based on compact representations
of quantum states, the frame-based operations described
herein lend themselves to multi-threaded implementation for
parallel simulation. Only the orthogonalization procedure
creates a bottleneck by requiring operations involving mul-
tiple frames. The other processes and methods described
above may be implemented by one or more processors of a
classical computer executing instructions pertaining to one
of'a number of frames or phase vectors. Thus, the efficiency
of processing and memory usage of the classical computer
system may be further improved by the following methods.

FIG. 9 illustrates a flow diagram of an exemplary parallel
simulation method 900. The method 900 begins at block
902, where the initial basis state ly) is received by the
classical computer. In some embodiments, the initial basis
state 1) may consist of one or more of a deterministic
vector of qubits (e.g., 100 . . . 0)), a phase vector o, a
stabilizer matrix M , or a frame F. The initial basis
state ) is decomposed into an orthogonal superposition of
stabilizer states |¥) at block 904 to obtain a stabilizer frame
F, using the techniques described above. In some embodi-
ments, the stabilizer frame F may also be divided into a list
of stabilizer frames F={F ', F',, ..., F'} and stored as
input to the iterative simulation process at block 905. The
remainder of the method 900 is then implemented by the
classical computer to iteratively apply a quantum circuit C
including a number of quantum gates U E C to the list of
stabilizer frames F={F"', F',, ..., F' }inblock 905. At
block 906, the classical computer determines whether any
gates UeC remain to be simulated. While at least one gate U
remains, the classical computer determines whether the gate
U is a stabilizer gate (e.g., H, R, or CNOT) at block 908. If
gate U is a stabilizer gate, then the gate is applied to all
frames in F and the list of stabilizer frames F=

10

15

20

25

30

35

40

45

50

55

60

24

{F', F'y, ..., F'} is updated at block 910. The updated
list of stabilizer frames may then be stored at block 905 and
used as the input in the next iteration of the process. If gate
U is not a stabilizer gate, then the classical computer
determines whether the gate U is a measurement gate at
block 912. Where gate U is a measurement gate, the classical
computer determines the outcome state at block 912 and
may record the measurement results at block 916. In some
embodiments, a random number generator or other known
methods of sampling a random distribution to determine a
discrete outcome from a probability distribution may be
used to determine a discrete outcome at block 914, as
discussed above. After determining the outcome state at
block 914, the results of measurement may be used to update
the list of stabilizer frames at block 910.

Where the gate U is neither a stabilizer gate nor a
measurement gate, the iteration continues by applying the
gate U to each frame in the list of stabilizer frames at block
918 using the frame-based simulation techniques discussed
above, expanding the set of phase vectors in each frame in
F . The global phase may be maintained during simulation
of non-stabilizer gates (e.g, Toffoli or controlled-R(a) gates)
using the techniques discussed with respect to method 500.
Following application of the gate U to each frame, candidate
pairs of phase vectors o in each frame in the list are
coalesced into new frames at block 920. Frames with
equivalent matrices are then merged to eliminate redundan-
cies at block 922. The classical computer may then deter-
mine whether to continue the coalescing procedure at block
924 by determining whether any candidate pairs remain, as
discussed above. When all frames in F have been
coalesced, the classical computer next determines whether
the frames in F are orthogonal at block 926. Orthogonality
of the stabilizer matrices M ’eM corresponding to the
frames F, in F may be determined using known methods
(e.g., inner product computation). In some embodiments, the
canonical structure of the stabilizer matrices in M may be
used to reduce the number of matrix comparisons required.
Where the set P of Pauli operators that form the intersection
of rows across matrices in M is non-empty, the orthogonality
of any two matrices in M may be determined by checking
whether the phase vector entries corresponding to the set P
of Pauli operators that form the intersection of rows across
two matrices are different. Where the frames are determined
not to be orthogonal, they can be made orthogonal using the
orthogonalization method 600 described above. Once all
frames are orthogonal, the list of stabilizer frames F ={F",,
Fr,, ..., F'} is updated at block 910. When no gates
remain to be applied at block 906, the method 900 termi-
nates.

Implementation Using a Classical Computer

The preceding methods are designed to be implemented
by a classical computer to simulate the operation of a
quantum computer, which is advantageous in the design and
testing of quantum circuits and algorithms. The matrix,
vector, and logic operations discussed herein may be per-
formed on a classical computer, including specialized com-
puting systems or commercially available personal comput-
ers, laptop computers, servers, or mainframes. The
operations performed by the classical computer may also be
performed by a program or programs implemented on one or
more computers. In some embodiments, some or all of the
operations may be performed by more than one computer
communicatively connected through a network.



US 9,477,796 B2

25

FIG. 10 illustrates an exemplary block diagram of a
computer system 1000 on which the methods and techniques
described herein may be implemented in accordance with
the described embodiments. The computer system 1000
includes a computing device in the form of a computer 1010.
Components of the computer 1010 may include, but are not
limited to, a processing unit 1020, a system memory 1030,
and a system bus 1021 that couples various system compo-
nents including the system memory to the processing unit
1020. The system bus 1021 may be any of several types of
bus structures including a memory bus or memory control-
ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. By way of example, and not limitation,
such architectures include the Industry Standard Architec-
ture (ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus (also known as Mezzanine bus).

Computer 1010 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 1010 and
includes both transitory and non-transitory media, and both
removable and non-removable media. By way of example,
and not limitation, computer readable media may include
non-transitory computer storage media. Computer storage
media includes volatile and nonvolatile, removable and
non-removable media implemented in any method or tech-
nology for storage of information such as computer readable
instructions, data structures, program modules, or other data.
Non-transitory computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, FLASH memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired information and which can accessed by
computer 1010.

The system memory 1030 includes computer storage
media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) 1031 and random access
memory (RAM) 1032. A basic input/output system 1033
(BIOS), containing the basic routines that help to transfer
information between elements within computer 1010, such
as during start-up, is typically stored in ROM 1031. RAM
1032 typically contains data and/or program modules that
are immediately accessible to and/or presently being oper-
ated on by processing unit 1020. By way of example, and not
limitation, FIG. 10 illustrates operating system 1034, appli-
cation programs 1035, other program modules 1036, and
program data 1037.

The computer 1010 may also include other removable or
non-removable, volatile or nonvolatile computer storage
media. By way of example only, FIG. 10 illustrates a hard
disk drive 1041 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 1051 that
reads from or writes to a removable, nonvolatile magnetic
disk 1052, and an optical disk drive 1055 that reads from or
writes to a removable, nonvolatile optical disk 1056 such as
a CD ROM or other optical media. Other removable or
non-removable, volatile or nonvolatile computer storage
media that can be used in the exemplary operating environ-
ment include, but are not limited to, magnetic tape cassettes,
flash memory cards, digital versatile disks, digital video
tape, solid state RAM, solid state ROM, and the like. The
hard disk drive 1041 is typically connected to the system bus
1021 through a non-removable memory interface such as
interface 1040, and magnetic disk drive 1051 and optical

10

15

20

25

30

35

40

45

50

55

60

65

26

disk drive 1055 are typically connected to the system bus
1021 by a removable memory interface, such as interface
1050.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 10 provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 1010. In FIG. 10,
for example, hard disk drive 1041 is illustrated as storing
operating system 1044, application programs 1045, other
program modules 1046, and program data 1047. Note that
these components can either be the same as or different from
operating system 1034, application programs 1035, other
program modules 1036, and program data 1037. Operating
system 1044, application programs 1045, other program
modules 1046, and program data 1047 are given different
numbers here to illustrate that, at a minimum, they are
different copies. A user may enter commands and informa-
tion into the computer 1010 through input devices such as a
keyboard 1062 and cursor control device 1061, commonly
referred to as a mouse, trackball or touch pad. A monitor
1091 or other type of display device is also connected to the
system bus 1021 via an interface, such as a graphics con-
troller 1090. In addition to the monitor, computers may also
include other peripheral output devices such as printer 1096,
which may be connected through an output peripheral
interface 1095.

The computer 1010 may operate in a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 1080. The remote
computer 1080 may be a personal computer, a server, a
router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 1010,
although only a memory storage device 1081 has been
illustrated in FIG. 10. The logical connections depicted in
FIG. 10 include a local area network (LAN) 1071 and a wide
area network (WAN) 1073, but may also include other
networks.

When used in a LAN networking environment, the com-
puter 1010 is connected to the LAN 1071 through a network
interface or adapter 1070. When used in a WAN networking
environment, the computer 1010 typically includes a modem
1072 or other means for establishing communications over
the WAN 1073, such as the Internet. The modem 1072,
which may be internal or external, may be connected to the
system bus 1021 via the input interface 1060, or other
appropriate mechanism. In a networked environment, pro-
gram modules depicted relative to the computer 1010, or
portions thereof, may be stored in the remote memory
storage device 1081. By way of example, and not limitation,
FIG. 10 illustrates remote application programs 1085 as
residing on memory device 1081.

The communications connections 1070, 1072 allow the
device to communicate with other devices. The communi-
cations connections 1070, 1072 are an example of commu-
nication media. The communication media typically embod-
ies computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. A “modulated data signal” may
be a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media.



US 9,477,796 B2

27

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and may, where appropriate, be
performed in an order other than the order illustrated.
Structures and functionality presented as separate compo-
nents in example configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements fall within the
scope of the subject matter herein.

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
example embodiments, comprise processor-implemented
modules. Although the term “processor” may include central
processing units (CPUs), it may also include equivalent
general or special-purpose circuits, such as field program-
mable gate arrays (FPGAs) or graphics processing units
(GPUs).

Similarly, the methods or routines described herein may
be at least partially processor-implemented. For example, at
least some of the operations of a method may be performed
by one or more processors or processor-implemented hard-
ware modules. The performance of certain of the operations
may be distributed among the one or more processors, not
only residing within a single machine, but deployed across
a number of machines. In some example embodiments, the
processor or processors may be located in a single location,
while in other embodiments the processors may be distrib-
uted across a number of locations.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a
computer) that manipulates or transforms data represented
as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or a combination thereof), registers, or
other machine components that receive, store, transmit, or
display information.

As used herein any reference to “one embodiment” or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

Some embodiments may be described using the expres-
sion “coupled” and “connected” along with their derivatives.
For example, some embodiments may be described using
the term “coupled” to indicate that two or more elements are
in direct physical or electrical contact. The term “coupled,”
however, may also mean that two or more elements are not
in direct contact with each other, but yet still co-operate or
interact with each other. The embodiments are not limited in
this context.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-

2 <

2 <

10

15

20

25

30

35

40

45

50

55

60

65

28

tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appa-
ratus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present).

In addition, use of the “a” or “an” are employed to
describe elements and components of the embodiments
herein. This is done merely for convenience and to give a
general sense of the description. This description, and the
claims that follow, should be read to include one or at least
one and the singular also includes the plural unless it is
obvious that it is meant otherwise.

This detailed description is to be construed as exemplary
only and does not describe every possible embodiment, as
describing every possible embodiment would be impracti-
cal, if not impossible. One could implement numerous
alternate embodiments, using either current technology or
technology developed after the filing date of this application.

Upon reading this disclosure, those of skill in the art will
appreciate still additional alternative structural and func-
tional designs for system and a method for assigning mobile
device data to a vehicle through the disclosed principles
herein. Thus, while particular embodiments and applications
have been illustrated and described, it is to be understood
that the disclosed embodiments are not limited to the precise
construction and components disclosed herein. Various
modifications, changes and variations, which will be appar-
ent to those skilled in the art, may be made in the arrange-
ment, operation and details of the method and apparatus
disclosed herein without departing from the spirit and scope
defined in the appended claims.

The particular features, structures, or characteristics of
any specific embodiment may be combined in any suitable
manner and in any suitable combination with one or more
other embodiments, including the use of selected features
without corresponding use of other features. In addition,
many modifications may be made to adapt a particular
application, situation or material to the essential scope and
spirit of the present invention. It is to be understood that
other variations and modifications of the embodiments of the
present invention described and illustrated herein are pos-
sible in light of the teachings herein and are to be considered
part of the spirit and scope of the present invention. By way
of example, and not limitation, the present disclosure con-
templates at least the following aspects:

1. A method for maintaining global phases to improve
processing efficiency or reduce memory usage during simu-
lation of at least one quantum gate of a quantum computer
using a classical computer, the method comprising: receiv-
ing, at a processor of the classical computer, a quantum state
that is a superposition of a plurality of stabilizer states,
wherein the quantum state is represented by a stabilizer
matrix associated with the plurality of stabilizer states, a
plurality of phase vectors representing each of the stabilizer
states, and an amplitude vector, wherein each entry in the
amplitude vector represents a global phase associated with
one of the plurality of phase vectors; receiving, at a proces-
sor of the classical computer, a matrix representation of the
at least one quantum gate; and determining, by a processor
of the classical computer, the effect of the at least one
quantum gate on the quantum state in a plurality of itera-



US 9,477,796 B2

29

tions, each iteration including: applying, by a processor of
the classical computer, one of the plurality of phase vectors
to the stabilizer matrix; determining, by a processor of the
classical computer, an input basis state associated with the
one phase vector applied to the stabilizer matrix; determin-
ing, by a processor of the classical computer, an input
non-zero amplitude associated with the input basis state;
determining, by a processor of the classical computer, a first
output non-zero amplitude associated with an output basis
state by applying the matrix representation of the at least one
quantum gate to the input non-zero amplitude and the input
basis state; determining, by a processor of the classical
computer, a second output non-zero amplitude of the output
basis state using the stabilizer matrix and the matrix repre-
sentation of the at least one quantum gate; and adjusting, by
a processor of the classical computer, the entry in the
amplitude vector associated with the one phase vector
applied to the stabilizer matrix, wherein the entry is adjusted
proportionally to the first output non-zero amplitude and the
second output non-zero amplitude.

2. The method according to aspect 1, wherein at least one
quantum gate of the quantum computer is not a stabilizer
gate.

3. The method according to either of aspect 1 or aspect 2,
wherein a set of the quantum gates form a universal set for
quantum computation.

4. The method according to any one of the preceding
aspects, wherein the stabilizer matrix is in canonical form.

5. The method according to any one of the preceding
aspects, wherein: receiving the quantum state that is a
superposition of the plurality of stabilizer states further
comprises compressing, by a processor of the classical
computer, the quantum state into a stabilizer frame repre-
senting the quantum state, wherein the stabilizer frame
includes the stabilizer matrix, the plurality of phase vectors,
and the amplitude vector, and the method further comprises
determining, by a processor of the classical computer, the
effect of a plurality of the quantum gates on the quantum
state using the stabilizer frame without uncompressing the
stabilizer frame for measurement until the plurality of quan-
tum gates have been applied to the quantum state.

6. A tangible, non-transitory computer-readable medium
storing instructions for maintaining global phases to
improve processing efficiency or reduce memory usage
during simulation of at least one quantum gate of a quantum
computer using a classical computer that, when executed by
one or more processors of the classical computer, cause the
classical computer to: receive a quantum state that is a
superposition of a plurality of stabilizer states, wherein the
quantum state is represented by a stabilizer matrix associ-
ated with the plurality of stabilizer states, a plurality of phase
vectors representing each of the stabilizer states, and an
amplitude vector, wherein each entry in the amplitude vector
represents a global phase associated with one of the plurality
of phase vectors; receive a matrix representation of the at
least one quantum gate; and determine the effect of the at
least one quantum gate on the quantum state in a plurality of
iterations, each iteration including instructions to: apply one
of the plurality of phase vectors to the stabilizer matrix;
determine an input basis state associated with the one phase
vector applied to the stabilizer matrix; determine an input
non-zero amplitude associated with the input basis state;
determine a first output non-zero amplitude associated with
an output basis state by applying the matrix representation of
the at least one quantum gate to the input non-zero amplitude
and the input basis state; determine a second output non-zero
amplitude of the output basis state using the stabilizer matrix

20

25

30

40

45

50

55

30

and the matrix representation of the at least one quantum
gate; and adjust the entry in the amplitude vector associated
with the one phase vector applied to the stabilizer matrix,
wherein the entry is adjusted proportionally to the first
output non-zero amplitude and the second output non-zero
amplitude.

7. The tangible, non-transitory computer-readable
medium according to aspect 6, wherein at least one quantum
gate of the quantum computer is not a stabilizer gate.

8. The tangible, non-transitory computer-readable
medium according to either of aspect 6 or aspect 7, wherein
the stabilizer matrix is in reduced row-echelon form.

9. The tangible, non-transitory computer-readable
medium according to any one of aspects 6-8, wherein the
executable instructions that when executed by the one or
more processors cause the classical computer to receive the
quantum state that is a superposition of the plurality of
stabilizer states further comprise executable instructions that
when executed by the one or more processors cause the
classical computer to compress the quantum state into a
stabilizer frame representing the quantum state, wherein the
stabilizer frame includes the stabilizer matrix, the plurality
of phase vectors, and the amplitude vector; and further
comprising executable instructions that when executed by
the one or more processors cause the classical computer to
determine the effect of a plurality of the quantum gates on
the quantum state using the stabilizer frame without uncom-
pressing the stabilizer frame for measurement until the
plurality of quantum gates have been applied to the quantum
state.

10. The tangible, non-transitory computer-readable
medium according to any one of aspects 6-9, wherein the
stabilizer frame further comprises a linear combination of a
plurality of mutually orthogonal stabilizer frames.

11. A method for orthogonalization of a linear combina-
tion of stabilizer states to improve processing efficiency or
reduce memory usage during simulation of a quantum
circuit using a classical computer, the method comprising:
receiving, at a processor of the classical computer, a linear
combination of stabilizer states, wherein the linear combi-
nation includes a plurality of stabilizer states represented by
canonical stabilizer matrices and a plurality of coefficients
associated with the plurality of stabilizer states; and orthogo-
nalizing, by a processor of the classical computer, the linear
combination of stabilizer states in each of one or more
iterations, including: identifying, by a processor of the
classical computer, a column in which at least two of the
canonical stabilizer matrices contain different types of Pauli
literals; decomposing, by a processor of the classical com-
puter, each of the stabilizer matrices that contain an X or Y
Pauli literal in the identified column into a first matrix and
a second matrix, wherein the first matrix and the second
matrix represent stabilizer states that are nearest neighbors
of the stabilizer state associated with the decomposed sta-
bilizer matrix; determining, by a processor of the classical
computer, a first global phase factor of the first matrix and
a second global phase factor of the second matrix associated
with each of the decomposed stabilizer matrices; and replac-
ing, by a processor of the classical computer, each of the
decomposed stabilizer matrices and their associated coeffi-
cients with (i) the first matrix and a first coefficient propor-
tionate to the first global phase factor associated with the
decomposed stabilizer matrix and (ii) the second matrix and
a second coeflicient proportionate to the second global phase
factor associated with the decomposed stabilizer matrix.

12. The method according to aspect 11, wherein: at least
one of the quantum gates is a measurement gate, and



US 9,477,796 B2

31

determining the effect of the measurement gate comprises
determining, by a processor of the classical computer, an
outcome probability of a state using normalized outcome
probabilities of the state in each of the frames.

13. The method according to either of aspect 11 or aspect
12, wherein: at least one of the quantum gates is a measure-
ment gate, and determining the effect of the measurement
gate comprises determining, using a processor of the clas-
sical computer, an outcome probability of a state using
normalized outcome probabilities of the state in each of the
frames.

14. The method according to any one of aspects 11-13,
wherein the method is implemented in parallel on at least
two groups, with each of the groups containing at least one
of the stabilizer frames.

15. The method according to any one of aspects 11-14,
wherein at least one of the quantum gates is not a stabilizer
gate.

16. A tangible, non-transitory computer-readable medium
storing instructions for orthogonalization of a linear com-
bination of stabilizer states to improve processing efficiency
or reduce memory usage during simulation of a quantum
circuit using a classical computer that, when executed by
one or more processors of the classical computer, cause the
classical computer to: receive a linear combination of sta-
bilizer states, wherein the linear combination includes a
plurality of stabilizer states represented by canonical stabi-
lizer matrices and a plurality of coefficients associated with
the plurality of stabilizer states; and orthogonalize the linear
combination of stabilizer states in each of one or more
iterations, including instructions to: identify a column in
which at least two of the canonical stabilizer matrices
contain different types of Pauli literals; decompose each of
the stabilizer matrices that contain an X or Y Pauli literal in
the identified column into a first matrix and a second matrix,
wherein the first matrix and the second matrix represent
stabilizer states that are nearest neighbors of the stabilizer
state associated with the decomposed stabilizer matrix;
determine a first global phase factor of the first matrix and
a second global phase factor of the second matrix associated
with each of the decomposed stabilizer matrices; and replace
each of the decomposed stabilizer matrices and their asso-
ciated coefficients with (i) the first matrix and a first coef-
ficient proportionate to the first global phase factor associ-
ated with the decomposed stabilizer matrix and (ii) the
second matrix and a second coeficient proportionate to the
second global phase factor associated with the decomposed
stabilizer matrix.

17. The tangible, non-transitory computer-readable
medium according to aspect 16, wherein the instructions to
decompose each of the stabilizer matrices further comprise
instructions to (i) identify a row in the stabilizer matrix that
contains an X or Y Pauli literal in the identified column, (ii)
cause every other row in the stabilizer matrix that commutes
with the identified row to anticommute with the identified
row, (iii) create the first matrix from the revised stabilizer
matrix by replacing the row with a first new row containing
a positive Z Pauli literal in the identified column, and (iv)
create the second matrix from the revised stabilizer matrix
by replacing the row with a second new row containing a
negative Z Pauli literal in the identified column.

18. The tangible, non-transitory computer-readable
medium according to either of aspect 16 or aspect 17,
wherein the linear combination of stabilizer states comprises
a linear combination of stabilizer frames representing a
quantum state, and further comprising executable instruc-
tions that when executed by the one or more processors

10

15

20

25

30

35

40

45

50

55

60

65

32

cause the classical computer to determine the effect of at
least one quantum gate on the linear combination of stabi-
lizer states by applying a matrix representation of the
quantum gate to each of the stabilizer frames.

19. The tangible, non-transitory computer-readable
medium according to any one of aspects 16-18, wherein at
least one of the quantum gates is a measurement gate, and
the executable instructions that when executed by the one or
more processors cause the classical computer to determine
the effect of at least one quantum gate on the linear com-
bination of stabilizer states further comprise executable
instructions that when executed by the one or more proces-
sors cause the classical computer to determine an outcome
probability of a state using normalized outcome probabilities
of the state in each of the frames.

20. The tangible, non-transitory computer-readable
medium according to any one of aspects 16-19, wherein at
least one of the quantum gates is not a stabilizer gate.

What is claimed is:

1. A method for simulating quantum computation on a
classical computer by maintaining global phases during
simulation of at least one quantum gate of a quantum
computer using the classical computer, the method compris-
ing:

receiving, at a processor of the classical computer, a

quantum state that is a superposition of a plurality of
stabilizer states, wherein the quantum state is repre-
sented by (i) a stabilizer matrix associated with the
plurality of stabilizer states, (ii) a plurality of phase
vectors representing each of the stabilizer states, and
(iii) an amplitude vector, wherein each entry in the
amplitude vector represents a global phase of one of the
plurality of stabilizer states represented by one of one
of the plurality of phase vectors;

receiving, at a processor of the classical computer, a

matrix representation of the at least one quantum gate;
and

determining, by a processor of the classical computer, the

effect of the at least one quantum gate on the quantum

state in a plurality of iterations, each iteration associ-

ated with a phase vector of the plurality of phase

vectors and including:

applying, by a processor of the classical computer, the
phase vector to the stabilizer matrix by setting lead-
ing phases of the stabilizer matrix to values of entries
in the phase vector;

determining, by a processor of the classical computer,
an input basis state associated with the phase vector
applied to the stabilizer matrix based upon the entries
in the phase vector and corresponding literals in the
stabilizer matrix;

determining, by a processor of the classical computer,
an input non-zero amplitude of the input basis state
by Gaussian elimination or sampling of values of the
stabilizer matrix;

applying, by a processor of the classical computer, the
matrix representation of the at least one quantum
gate to the input non-zero amplitude and the input
basis state by matrix-vector multiplication to obtain
an output basis state and a first output non-zero
amplitude associated with the output basis state;

determining, by a processor of the classical computer,
a second output non-zero amplitude of the output
basis state from the result of matrix multiplication of
the matrix representation of the at least one quantum



US 9,477,796 B2

33

gate, the stabilizer matrix, and the conjugate trans-
pose of the matrix representation of the at least one
quantum gate; and

adjusting, by a processor of the classical computer, the
entry in the amplitude vector associated with the
phase vector applied to the stabilizer matrix to main-
tain the global phase associated with the phase
vector, wherein the entry is adjusted by multiplying
the entry by a proportion of the first output non-zero
amplitude to the second output non-zero amplitude;
and

determining, by a processor of the classical computer, a

resulting quantum state using the adjusted amplitude
vector.
2. The method of claim 1, wherein at least one quantum
gate of the quantum computer is not a stabilizer gate.
3. The method of claim 1, wherein a set of the quantum
gates form a universal set for quantum computation.
4. The method of claim 1, wherein the stabilizer matrix is
in canonical form.
5. The method of claim 1, wherein:
receiving the quantum state that is a superposition of the
plurality of stabilizer states further comprises generat-
ing, by a processor of the classical computer, a stabi-
lizer frame representing the quantum state as a super-
position of orthogonal stabilizer states, wherein the
stabilizer frame includes the stabilizer matrix, the plu-
rality of phase vectors, and the amplitude vector, and

the method further comprises determining, by a processor
of the classical computer, an additional effect of a
plurality of additional quantum gates on the quantum
state using the stabilizer frame by sequentially applying
the plurality of additional quantum gates to the stabi-
lizer frame before measuring the resulting quantum
state.
6. A tangible, non-transitory computer-readable medium
storing instructions for simulating quantum computation on
a classical computer by maintaining global phases during
simulation of at least one quantum gate of a quantum
computer using the classical computer that, when executed
by one or more processors of the classical computer, cause
the classical computer to:
receive a quantum state that is a superposition of a
plurality of stabilizer states, wherein the quantum state
is represented by (i) a stabilizer matrix associated with
the plurality of stabilizer states, (ii) a plurality of phase
vectors representing each of the stabilizer states, and
(iii) an amplitude vector, wherein each entry in the
amplitude vector represents a global phase associated
with of one of the plurality of stabilizer states repre-
sented by one of one of the plurality of phase vectors;

receive a matrix representation of the at least one quantum
gate; and

determine the effect of the at least one quantum gate on

the quantum state in a plurality of iterations, each

iteration associated with a phase vector of the plurality

of phase vectors and including instructions to:

apply the phase vector to the stabilizer matrix by setting
leading phases of the stabilizer matrix to values of
entries in the phase vector;

20

25

30

35

40

45

55

34

determine an input basis state associated with the phase
vector applied to the stabilizer matrix based upon the
entries in the phase vector and corresponding literals
in the stabilizer matrix;

determine an input non-zero amplitude of the input
basis state by Gaussian elimination or sampling of
values of the stabilizer matrix;

applying the matrix representation of the at least one
quantum gate to the input non-zero amplitude and
the input basis state by matrix-vector multiplication
to obtain an output basis state and a first output
non-zero amplitude associated with the output basis
state;

determine a second output non-zero amplitude of the
output basis state from the result of matrix multipli-
cation of the matrix representation of the at least one
quantum gate, the stabilizer matrix, and the conju-
gate transpose of the matrix representation of the at
least one quantum gate; and

adjust the entry in the amplitude vector associated with
the phase vector applied to the stabilizer matrix to
maintain the global phase associated with the phase
vector, wherein the entry is adjusted by multiplying
the entry by a proportion of the first output non-zero
amplitude to the second output non-zero amplitude;
and

determine a resulting quantum state using the adjusted

amplitude vector.

7. The tangible, non-transitory computer-readable
medium of claim 6, wherein at least one quantum gate of the
quantum computer is not a stabilizer gate.

8. The tangible, non-transitory computer-readable
medium of claim 6, wherein the stabilizer matrix is in
reduced row-echelon form.

9. The tangible, non-transitory computer-readable
medium of claim 6, wherein the executable instructions that
when executed by the one or more processors cause the
classical computer to receive the quantum state that is a
superposition of the plurality of stabilizer states further
comprise executable instructions that when executed by the
one or more processors cause the classical computer to
generate a stabilizer frame representing the quantum state as
a superposition of orthogonal stabilizer states, wherein the
stabilizer frame includes the stabilizer matrix, the plurality
of phase vectors, and the amplitude vector; and

further comprising executable instructions that when

executed by the one or more processors cause the
classical computer to determine an additional effect of
a plurality of additional quantum gates on the quantum
state using the stabilizer frame by sequentially applying
the plurality of additional quantum gates to the stabi-
lizer frame before measuring the resulting quantum
state.

10. The tangible, non-transitory computer-readable
medium of claim 9, wherein the stabilizer frame further
comprises a linear combination of a plurality of mutually
orthogonal stabilizer frames.

#* #* #* #* #*



